Validation of Varian’s SmartAdapt® deformable image registration algorithm for clinical application
نویسندگان
چکیده
BACKGROUND Re-contouring of structures on consecutive planning computed tomography (CT) images for patients that exhibit anatomical changes is elaborate and may negatively impact the turn-around time if this is required for many patients. This study was therefore initiated to validate the accuracy and usefulness of automatic contour propagation for head and neck cancer patients using SmartAdapt® which is the deformable image registration (DIR) application in Varian's Eclipse™ treatment planning system. METHODS CT images of eight head and neck cancer patients with multiple planning CTs were registered using SmartAdapt®. The contoured structures of target volumes and OARs of the primary planning CT were deformed accordingly and subsequently compared with a reference structure set being either: 1) a structure set independently contoured by the treating Radiation Oncologist (RO), or 2) the DIR-generated structure set after being reviewed and modified by the RO. RESULTS Application of DIR offered a considerable time saving for ROs in delineation of structures on CTs that were acquired mid-treatment. Quantitative analysis showed that 84% of the volume of the DIR-generated structures overlapped with the independently re-contoured structures, while 94% of the volume overlapped with the DIR-generated structures after review by the RO. This apparent intra-observer variation was further investigated resulting in the identification of several causes. Qualitative analysis showed that 92% of the DIR-generated structures either need no or only minor modification during RO reviews. CONCLUSIONS SmartAdapt is a powerful tool with sufficient accuracy that saves considerable time in re-contouring structures on re-CTs. However, careful review of the DIR-generated structures is mandatory, in particular in areas where tumour regression plays a role.
منابع مشابه
Evaluation of deformable image registration in HDR gynecological brachytherapy
Introduction: In brachytherapy, as in external radiotherapy, image-guidance plays an important role. For GYN treatments it is standard to acquire at least CT images and preferably MR images prior to each treatment and to calculate the dose of the day on each set of images. Then, the dose to the target and to the organs at risk (OAR) is calculated with worst case scenario from I...
متن کاملA Study on Robustness of Various Deformable Image Registration Algorithms on Image Reconstruction Using 4DCT Thoracic Images
Background: Medical image interpolation is recently introduced as a helpful tool to obtain further information via initial available images taken by tomography systems. To do this, deformable image registration algorithms are mainly utilized to perform image interpolation using tomography images.Materials and Methods: In this work, 4DCT thoracic images of five real patients provided by DI...
متن کاملDeformable registration for image-guided radiation therapy.
Ths paper examines several applications of deformable registration algorithms in the field of image-guided radiotherapy. The first part focuses on the description of input and output of deformable registration algorithms, with a brief review of conventional and most current methods. The typical applications of deformable registration are then reviewed on the basis of four practical examples. Th...
متن کاملMIND Demons for MR-to-CT deformable image registration in image-guided spine surgery
PURPOSE Localization of target anatomy and critical structures defined in preoperative MR images can be achieved by means of multi-modality deformable registration to intraoperative CT. We propose a symmetric diffeomorphic deformable registration algorithm incorporating a modality independent neighborhood descriptor (MIND) and a robust Huber metric for MR-to-CT registration. METHOD The method...
متن کاملA framework for deformable image registration validation in radiotherapy clinical applications
Quantitative validation of deformable image registration (DIR) algorithms is extremely difficult because of the complexity involved in constructing a deformable phantom that can duplicate various clinical scenarios. The purpose of this study is to describe a framework to test the accuracy of DIR based on computational modeling and evaluating using inverse consistency and other methods. Three cl...
متن کامل